

Randy Dahlgren
Department of Land, Air and Water Resources
University of California - Davis

Physical

- · Aggregation and Structure
- Surface Sealing
- Compaction
- Porosity
- Water Movement and Availability

Chemical

- pH
- Soluble Salts
- Sodium
- Nutrient Holding Capacity
- Nutrient Availability

Biological

- Macrofauna
- Microfauna
- Microorganisms
- Roots
- Biological Activity
- Organic Matter

Oak trees create "Islands of Soil Fertility"

0.0

0.5

2.0

1.5

1.0

Canopy Radii

2.5

Organic Matter & Nutrient Enrichment Occurs beneath Oak Canopy

Blue Oak Canopy vs Grassland Soil Properties

Table 4.3 Mean (±standard deviation) for selected soil properties for non-grazed soils beneath the oak canopy compared to soils in open grasslands on basic metavolcanic (greenstone) bedrock in the Sierra Nevada foothills of northern California (Dahlgren et al. 1997)

Soil property	Oak canopy soil	Grassland soil
A horizon thickness (cm)	12.1 (2.4)	8.4 (2.1)
Bulk density (g cm ⁻³)	0.92 (0.08)	1.12 (0.04)
Infiltration rate (cm hr ⁻¹)	10.4 (2.9)	6.9 (1.2)
$pH(H_2O)$	7.16 (0.15)	6.44 (0.15)
Organic C (g kg ⁻¹)	66.0 (8.3)	40.9 (4.1)
Total N (g kg ⁻¹)	4.44 (0.88)	2.98 (0.45)
C/N ratio (atomic)	17.5 (1.3)	16.2 (1.6)
Microbial biomass C (g kg ⁻¹)	1.25 (0.21)	0.78 (0.26)
$TP (mg kg^{-1})$	718 (204)	406 (71)
Available P (Bray—mg kg ⁻¹)	39.8 (14.1)	11.8 (3.0)
Exchangeable Ca (cmol _c kg ⁻¹)	16.8 (1.9)	7.9 (1.0)
Exchangeable Mg (cmol _c kg ⁻¹)	3.0 (0.3)	2.1 (0.5)
Exchangeable K (cmol _c kg ⁻¹)	0.91 (0.39)	0.44 (0.07)
Base saturation (%)	71.8 (8.4)	50.9 (9.2)

Blue Oak – Ecological Engineers

Deep Roots

What happens when blue oak are removed?

Effects of Oak Tree Removal on Soil Fertility Islands

Loss of organic carbon following oak tree removal

Organic Matter Decomposition & Stabilization Model

Forage Biomass Gophers vs Background

Soil Moisture Content – Central Coast

Courtesy Royce Larsen

Grassland SOM Distribution

Global average Root:Shoot ratio of 3.7 for grasslands

Organic Matter Increases Plant-Available Water Holding Capacity

Yeomans Plow to Promote Infiltration and Deeper Root Growth?

Importance of Soil Cover

Good ground cover 60 -75% of ground covered with plants and litter

Fair ground cover 37 % of ground covered with plants and litter

Poor ground cover 10 % of ground covered with plants and litter

Surface runoff 2 % of rainfall Soil Loss 0.05 tons/ acre

Surface runoff 14 % of rainfall Soil Loss 0.5 tons/ acre

Surface runoff 73 % of rainfall Soil Loss 5.55 tons/ acre

b) soil crusts after aggregates break down

Effect of Soil Coverage on Soil Erosion Hazard

Enhanced Water Utilization in Rangelands

Seasonal Pattern in Streamwater Nitrate

Low Nutrient Demand

High Nutrient Demand

Deeper root structure, especially perennials, would capture nutrients more efficiently

Annual grass typically <30 cm rooting depth

Nonpoint Source Pollutants on CA Rangelands

Nutrients (N/P)

Pathogens

Cryptosporidium parvum

10 μm

Photo Credit: H.D.A Lindquist, U.S. EPA

Grazing Treatments

- > No grazing
- > 1500 kg/ha RDM
- > 1000 kg/ha RDM
- > 500 kg/ha RDM

E. coli - Grazing

Physical

- · Aggregation and Structure
- Surface Sealing
- Compaction
- Porosity
- Water Movement and Availability

Chemical

- pH
- Soluble Salts
- Sodium
- Nutrient Holding Capacity
- Nutrient Availability

Biological

- Macrofauna
- Microfauna
- Microorganisms
- Roots
- Biological Activity
- Organic Matter

Importance of Soil Organic Matter

